
Register Allocation
PLUS IMPLEMENTING 𝜙 -FUNCTIONS AND METHOD INLINING

Implementing 𝜙-Functions

li t1 <- 0
jmp L1

li t2 <- 4
jmp L1

L1:
t3 <- 𝜙(t1, t2)
…

Implementing 𝜙-Functions

li t1 <- 0
jmp L1

li t2 <- 4
jmp L1

L1:
t3 <- 𝜙(t1, t2)
…

li t1 <- 0
jmp L1a

li t2 <- 4
jmp L1b

…

L1a:
mov t3 <- t1

L1b:
mov t3 <- t2

A Simple Algorithm
For each 𝜙-function: tx <- 𝜙(ta, tb, …)

◦For each inbound edge:

◦Walk the CFG from child to parent.

◦Let ty be the first assignment to one of ta, tb, …

◦Create a new node along the current edge containing
mov tx <- ty

Why does this work?

Register Allocation

The Register Allocation Problems

1. Register allocation:
◦ Which values to store in registers and which in memory?

2. Register assignment:
◦ Which registers to store them in?

Confusingly, “register allocation” may refer to doing both.

Register Allocation Algorithms

Usage count

Linear scan

Graph coloring

NP-complete Faster

Naïve Slower

Usage Count Allocation

For each basic block:

1. Count uses for each variable.

2. Allocate registers to temporaries with highest usage.

3. Insert loads and stores at basic block boundaries.

Works best when IR is not in SSA form.

Live Intervals

Assume linear ordering of statements in IR.

A live interval [𝑖, 𝑗] for value 𝑣 is an interval such that:
◦ For 0 < 𝑖′ < 𝑖, 𝑣 is not live at 𝑖′.

◦ For 𝑗 < 𝑗′ < 𝑛, 𝑣 is not live at 𝑗′.

Not equivalent to [first use, last use]. Why?

Live intervals may contain subintervals in which 𝑣 is not live.

Live Intervals

Assume linear ordering of statements in IR.

A live interval [𝑖, 𝑗] for value 𝑣 is an interval such that:
◦ For 0 < 𝑖′ < 𝑖, 𝑣 is not live at 𝑖′.

◦ For 𝑗 < 𝑗′ < 𝑛, 𝑣 is not live at 𝑗′.

Not equivalent to [first use, last use]. Why?

In general, may contain subintervals in which 𝑣 is not live.

A Previous Example (Before Optimization)
li t1 <- 1

boxi t2 <- t1

L1:

t19 <- 𝜙(t2, t18)

t20 <- 𝜙(r0, t12)

unboxi t3 <- t19

li t4 <- 10

boxi t5 <- t4

unboxi t6 <- t5

ble t6 t3 L2

unboxi t7 <- t20

li t8 <- 2

boxi t9 <- t8

unboxi t10 <- t9

mul t11 <- t7 t10

boxi t12 <- t11

unboxi t13 <- t2

li t14 <- 1

boxi t15 <- t14

unboxi t16 <- t15

add t17 <- t13 t16

boxi t18 <- t17

jmp L1

L2:

mov r1 <- t12

A Previous Example
li t1 <- 1

L1:

t19 <- 𝜙(t1, t17)

t20 <- 𝜙(r0, t12)

li t4 <- 10

ble t4 t19 L2

unboxi t7 <- t20

li t8 <- 2

mul t11 <- t7 t8

boxi t12 <- t11

li t14 <- 1

add t17 <- t19 t14

jmp L1

L2:

mov r1 <- t20

A Previous Example
li t1 <- 1

mov t19 <- t1

mov t20 <- r0

L1:

li t4 <- 10

ble t4 t19 L2

unboxi t7 <- t20

li t8 <- 2

mul t11 <- t7 t8

boxi t12 <- t11

li t14 <- 1

add t17 <- t19 t14

mov t19 <- t17

mov t20 <- t12

jmp L1

L2:

mov r1 <- t20

Implement
𝜙-functions
Implement
𝜙-functions

A Previous Example
li t1 <- 1

mov t19 <- t1

mov t20 <- r0

L1:

li t4 <- 10

ble t4 t19 L2

unboxi t7 <- t20

li t8 <- 2

mul t11 <- t7 t8

boxi t12 <- t11

li t14 <- 1

add t17 <- t19 t14

mov t19 <- t17

mov t20 <- t12

jmp L1

L2:

mov r1 <- t20

Live Intervals Example
li t1 <- 1

mov t19 <- t1

mov t20 <- r0

L1:

li t4 <- 10

ble t4 t19 L2

unboxi t7 <- t20

li t8 <- 2

mul t11 <- t7 t8

boxi t12 <- t11

li t14 <- 1

add t17 <- t19 t14

mov t19 <- t17

mov t20 <- t12

jmp L1

L2:

mov r1 <- t20

Interval Interference

Two intervals interfere if they overlap.
◦ Given [𝑖1, 𝑗1] and 𝑖2, 𝑗2 , 𝑖1 ≤ 𝑗2 and 𝑖2 ≤ 𝑗1.

Interfering intervals may not be assigned the same register.

Linear Scan

Linear Scan
r0, t1

Linear Scan

r0, t1, t19

Linear Scan

r0, t19, t20

Linear Scan

t19, t20, t4

Linear Scan

r1

Linear Scan Register Allocation

Scan IR from top to bottom.

◦ Keep track of currently active live intervals.

◦ When interval becomes inactive free its register.

◦ When interval becomes active assign it a free register.

Graph Coloring

r0

t1

t19

t20

t4

t7t8

t11

t12

t14

t17

r1

Graph Coloring

r0

t1

t19

t20

t4

t7t8

t11

t12

t14

t17

r1

Graph Coloring

r0

t1

t19

t20

t4

t7t8

t11

t12

t14

t17

r1

Graph Coloring

r0t1

t19

t20

t4

t7t8

t11

t12

t14

t17

r1

Graph Coloring
r0 t19t20t4 t7 t8 t11t12t14t17r1 t1

Graph Coloring
r0 t20t4 t7 t8 t11t12t14t17r1 t1

t19

Graph Coloring
r0 t4 t7 t8 t11t12t14t17r1 t1

t19

t20

Graph Coloring
r0 t4 t7 t8t12t14t17r1 t1

t19

t20

t11

Graph Coloring
r0 t4 t7t12t14t17r1 t1

t19

t20

t8

t11

Graph Coloring
r0 t4 t12t14t17r1 t1

t19

t20

t7t8

t11

Graph Coloring
r0 t4 t14t17r1 t1

t19

t20

t7t8

t11

t12

Graph Coloring
r0 t4 t17r1 t1

t19

t20

t7t8

t11

t12

t14

Graph Coloring
r0 t4r1 t1

t19

t20

t7t8

t11

t12

t14

t17

Graph Coloring
r0r1 t1

t19

t20

t4

t7t8

t11

t12

t14

t17

Graph Coloring
r1 t1 r0

t19

t20

t4

t7t8

t11

t12

t14

t17

Graph Coloring
r1 r0

t1

t19

t20

t4

t7t8

t11

t12

t14

t17

Graph Coloring

r0

t1

t19

t20

t4

t7t8

t11

t12

t14

t17

r1

Graph Coloring Register Allocation
Construct graph:
◦ Vertex for each location

◦ Edge between simultaneously live locations

While graph is not empty:
◦ Remove node with fewest edges and push on stack.

While stack is not empty:
◦ Pop node, reinsert into graph, and assign color.

What if we need more colors than we have registers?

“Spilling” Values: Linear Scan

More active live intervals than registers.

Spill value in interval with latest end-point.
◦ Insert store after definition and loads before every access.

◦ Note: Live interval of new load ends after first use.

◦ Remove value from active list and continue.

Alternatively, spill value in interval with fewest uses.

“Spilling” Values: Graph Coloring

Adding a node with no available color.
◦ Not same as node with at least N edges.

Spill node and restart graph coloring.

t0 t1

t3 t2

t4

“Spilling” Values: Graph Coloring
Alternatively, attempt to “split” node:

◦ Find interfering range contained in this one such that this value is not
used in the other range.

◦ Store this value before the other range and load
it after.

add t3 <- t1 t2
st sp[3] <- t3
ld t4 <- sp[2]
li t5 <- 4
add t6 <- t4 t5
st sp[2] <- t6
ld t8 <- sp[3]
mul t7 <- t8 t4

add t3 <- t1 t2
ld t4 <- sp[2]
li t5 <- 4
add t6 <- t4 t5
st sp[2] <- t6
mul t7 <- t3 t4

“Spilling” Values: Graph Coloring
Alternatively, attempt to “split” node:

◦ Find interfering range contained in this one such that this value is not
used in the other range.

◦ Store this value before the other range and load
it after.

Caution: Split must be CFG-aware.
◦ Value must be stored and loaded on all paths.

Registers in Calling Conventions
If you pass parameters or return values by register:
◦ Pre-color intervals / nodes with appropriate register.

Callee-saved registers:
◦ Treat method entry as definition of all callee-saved registers.

◦ Treat method exit as use of all callee-saved registers.

Caller-saved registers:
◦ Insert store/load for all live caller-saved registers.

Performance Considerations
For small functions:
◦ Graph coloring and linear scan perform similarly.

For large functions:
◦ Graph coloring produces faster code (~10%, YMMV).

◦ Linear scan runs faster during compilation – ideal for JIT.

For human developers:
◦ Linear scan is simpler to write and debug.

Method Inlining

Inlining Intuition

Replace foo(x,y,z) with the body of foo.

◦ No function call overhead.
◦ Stack updates, register saving…

◦ Optimize inlined body as part of caller.
◦ Unboxing, register allocation, common sub-expressions,…

Inlining Limitations

Code bloat:
◦foo(1); foo(2) becomes two complete copies of foo.

◦ More instructions = greater chance of I-cache miss.

◦ Typically, limit size of methods to inline.

Recursive calls:
◦ How deep do you go?

◦ May require solving the halting problem.

Receiver Class Analysis
Only inline a method if we know which method to inline!

How?

Receiver Class Analysis

Data-flow analysis to the
rescue!

Direction: ?

Values: ?
◦ Init ?

Meet operator:
◦ ?

Transfer functions:
◦?

Only inline a method if we know which method to inline!

Receiver Class Analysis

Data-flow analysis: determine
dynamic type at call site.

Direction: forward

Values: type trees
◦ Init parameters to static types.

Meet operator:
◦ Common superclass.

Transfer functions:
◦new T→ T

◦ Method calls → hierarchy
rooted at static return type.

◦ …

Only inline a method if we know which method to inline!

Inlining in Practice
For each method call:
◦ If inlining depth is too deep: skip.

◦ If call site allows overrides: cannot inline*.

◦ If method body is too long: should not inline.

◦ Insert method body in place of call site:
◦ Update temporaries to avoid conflicts.

◦ Insert loads, stores, and moves to align parameters and return value.

Inlining in Practice
For each method call:
◦ If inlining depth is too deep: skip.

◦ If call site allows overrides: cannot inline*.

◦ If method body is too long: should not inline.

◦ Insert method body in place of call site:
◦ Update temporaries to avoid conflicts.

◦ Insert loads, stores, and moves to align parameters and return value.

*You could insert a case expression with multiple inlines or inline the common case while calling
the rest dynamically…

Backup

Live Interval with Gap

fibh(a:Int, b:Int, n:Int) : Int {

let c:Int <- a+b in

if 1 < n then

fibh(b, c, n-1)

else

c

fi

};

Live Interval with Gap
ld t1 <- sp[1]

unboxi t2 <- t1

ld t3 <- sp[2]

unboxi t4 <- t3

add t5 <- t2 t4

boxi t6 <- t5

li t7 <- 1

ld t8 <- sp[3]

unboxi t9 <- t8

ble t9 t7 L1

ld t10 <- sp[0]

li t11 <- 4

add sp <- sp t11

st sp[0] <- t11

st sp[1] <- t3

st sp[2] <- t6

sub t12 <- t9 t7

boxi t13 <- t12

st sp[3] <- t13

ld t14 <- t11[0]

ld t15 <- t14[6]

call t15

li t16 <- 4

sub sp <- sp t16

mov t17 <- r1

jmp L2

L1:

mov t18 <- t3

L2:

t19 <- 𝜙(t17, t18)

mov r1 <- t19

ret

Live Interval with Gap
ld t1 <- sp[1]

unboxi t2 <- t1

ld t3 <- sp[2]

unboxi t4 <- t3

add t5 <- t2 t4

boxi t6 <- t5

li t7 <- 1

ld t8 <- sp[3]

unboxi t9 <- t8

ble t9 t7 L1

ld t10 <- sp[0]

li t11 <- 4

add sp <- sp t11

st sp[0] <- t11

st sp[1] <- t3

st sp[2] <- t6

sub t12 <- t9 t7

boxi t13 <- t12

st sp[3] <- t13

ld t14 <- t11[0]

ld t15 <- t14[6]

call t15

li t16 <- 4

sub sp <- sp t16

mov t17 <- r1

jmp L2

L1:

mov t18 <- t3

L2:

t19 <- 𝜙(t17, t18)

mov r1 <- t19

ret

A Running Example

mov r1 <- t20

li t1 <- 1

li t4 <- 10

ble t4 t19 L2
unboxi t7 <- t20

li t8 <- 2

mul t11 <- t7 t8

boxi t12 <- t11

li t14 <- 1

add t17 <- t19 t14

mov t19 <- t1

mov t20 <- r0

mov t19 <- t17

mov t20 <- t12

